>>> np.round(table_sm - table_sas, 3)
array([[ 0., 0., 0., -0., 0., -0., -0., 0., -0., 0., -0., 0.],
[ 0., 0., -0., -0., 0., -0., -0., 0., 0., 0., -0., 0.],
[ 0., 0., -0., -0., -0., 0., -0., -0., 0., -0., 0., -0.],
[ 0., 0., -0., 0., -0., 0., -0., 0., 0., 0., -0., 0.],
[ 0., 0., -0., -0., 0., -0., -0., 0., 0., -0., 0., 0.],
[ 0., 0., -0., 0., 0., 0., -0., -0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., -0., 0., -0., -0., -0., -0., 0.],
[ 0., 0., -0., -0., -0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., -0., -0., 0., -0., -0.],
[ 0., 0., 0., 0., 0., 0., -0., -0., -0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., -0., 0., -0., 0., -0., 0.],
[ 0., 0., 0., -0., -0., 0., -0., -0., -0., 0., -0., -0.],
[ 0., 0., -0., 0., 0., 0., 0., -0., 0., -0., -0., -0.],
[ 0., 0., 0., 0., -0., -0., 0., -0., -0., 0., 0., 0.],
[ 0., 0., 0., -0., -0., 0., 0., -0., -0., -0., 0., 0.],
[ 0., 0., -0., 0., 0., -0., 0., -0., 0., 0., -0., 0.],
[ 0., 0., 0., -0., 0., -0., 0., -0., -0., -0., -0., -0.],
[ 0., 0., 0., -0., 0., 0., 0., 0., -0., 0., 0., -0.],
[ 0., 0., -0., -0., 0., -0., 0., 0., 0., 0., 0., 0.]])
table_sm = np.column_stack([
np.arange(res.nobs) + 1,
res.model.endog,
res.fittedvalues,
predict_mean_se,
predict_mean_ci[:,0],
predict_mean_ci[:,1],
predict_ci[:,0],
predict_ci[:,1],
res.resid,
resid_se,
infl.resid_studentized_internal,
infl.cooks_distance()[0]
])
from numpy.testing import assert_almost_equal
assert_almost_equal(table_sm, table_sas, decimal=4)
>>> print st
=====================================================================================================================================
Obs Dep Var Predicted Std Error Mean ci Mean ci Predict ci Predict ci Residual Std Error Student Cook's
Population Value Mean Predict 95% low 95% upp 95% low 95% upp Residual Residual D
-------------------------------------------------------------------------------------------------------------------------------------
1 3.929 5.038 1.729 1.373 8.704 -1.903 11.980 -1.109 2.178 -0.509 0.055
2 5.308 5.039 1.391 2.090 7.987 -1.553 11.631 0.269 2.408 0.112 0.001
3 7.239 6.309 1.130 3.912 8.705 -0.055 12.672 0.930 2.541 0.366 0.009
4 9.638 8.847 0.957 6.818 10.876 2.612 15.082 0.791 2.611 0.303 0.004
5 12.866 12.655 0.872 10.806 14.504 6.476 18.834 0.211 2.641 0.080 0.000
6 17.069 17.732 0.858 15.913 19.550 11.562 23.901 -0.663 2.645 -0.251 0.002
7 23.191 24.078 0.883 22.205 25.951 17.892 30.264 -0.887 2.637 -0.336 0.004
8 31.443 31.693 0.920 29.742 33.644 25.483 37.903 -0.250 2.624 -0.095 0.000
9 39.818 40.577 0.949 38.566 42.589 34.348 46.807 -0.759 2.614 -0.290 0.004
10 50.155 50.731 0.959 48.697 52.764 44.494 56.967 -0.576 2.610 -0.221 0.002
11 62.947 62.153 0.949 60.142 64.164 55.924 68.382 0.794 2.614 0.304 0.004
12 75.994 74.845 0.920 72.894 76.796 68.635 81.055 1.149 2.624 0.438 0.008
13 91.972 88.806 0.883 86.933 90.679 82.620 94.992 3.166 2.637 1.201 0.054
14 105.710 104.035 0.858 102.217 105.854 97.866 110.205 1.675 2.645 0.633 0.014
15 122.775 120.534 0.872 118.686 122.383 114.356 126.713 2.241 2.641 0.849 0.026
16 131.669 138.303 0.957 136.274 140.332 132.068 144.537 -6.633 2.611 -2.541 0.289
17 151.325 157.340 1.130 154.943 159.736 150.976 163.704 -6.015 2.541 -2.367 0.370
18 179.323 177.646 1.391 174.697 180.595 171.054 184.238 1.677 2.408 0.696 0.054
19 203.211 199.221 1.729 195.556 202.887 192.280 206.163 3.990 2.178 1.831 0.704
=====================================================================================================================================
This is again just produced with SimpleTable, and I didn't spend any time on formatting yet.(aside: I'm still trying to figure out how to create an article without a large administrative overhead. This time I used sphinx but it doesn't quite work yet.)
No comments:
Post a Comment